Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell ; 187(6): 1547-1562.e13, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38428424

RESUMO

We sequenced and assembled using multiple long-read sequencing technologies the genomes of chimpanzee, bonobo, gorilla, orangutan, gibbon, macaque, owl monkey, and marmoset. We identified 1,338,997 lineage-specific fixed structural variants (SVs) disrupting 1,561 protein-coding genes and 136,932 regulatory elements, including the most complete set of human-specific fixed differences. We estimate that 819.47 Mbp or ∼27% of the genome has been affected by SVs across primate evolution. We identify 1,607 structurally divergent regions wherein recurrent structural variation contributes to creating SV hotspots where genes are recurrently lost (e.g., CARD, C4, and OLAH gene families) and additional lineage-specific genes are generated (e.g., CKAP2, VPS36, ACBD7, and NEK5 paralogs), becoming targets of rapid chromosomal diversification and positive selection (e.g., RGPD gene family). High-fidelity long-read sequencing has made these dynamic regions of the genome accessible for sequence-level analyses within and between primate species.


Assuntos
Genoma , Primatas , Animais , Humanos , Sequência de Bases , Primatas/classificação , Primatas/genética , Evolução Biológica , Análise de Sequência de DNA , Variação Estrutural do Genoma
2.
bioRxiv ; 2023 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-38014262

RESUMO

Simian immunodeficiency viruses (SIVs) comprise a large group of primate lentiviruses that endemically infect African monkeys. HIV-1 spilled over to humans from this viral reservoir, but the spillover did not occur directly from monkeys to humans. Instead, a key event was the introduction of SIVs into great apes, which then set the stage for infection of humans. Here, we investigate the role of the lentiviral entry receptor, CD4, in this key and fateful event in the history of SIV/HIV emergence. First, we reconstructed and tested ancient forms of CD4 at two important nodes in ape speciation, prior to the infection of chimpanzees and gorillas with these viruses. These ancestral CD4s fully supported entry of diverse SIV isolates related to the virus(es) that made this initial jump to apes. In stark contrast, modern chimpanzee and gorilla CD4s are more resistant to these viruses. To investigate how this resistance in CD4 was gained, we acquired CD4 sequences from 32 gorilla individuals of 2 species, and identified alleles that encode 8 unique CD4 proteins. Function testing of these identified allele-specific CD4 differences in susceptibility to virus entry. By engineering single point mutations from gorilla CD4 alleles into a permissive human CD4 receptor, we demonstrate that acquired SNPs in gorilla CD4 did convey resistance to virus entry. We provide a population genetic analysis to support the theory that selection is acting in favor of more and more resistant CD4 alleles in apes with endemic SIV infection (gorillas and chimpanzees), but not in other ape species (bonobo and orangutan) that lack SIV infections. Taken together, our results show that SIV has placed intense selective pressure on ape CD4, acting to drive the generation of SIV-resistant CD4 alleles in chimpanzees and gorillas.

3.
bioRxiv ; 2023 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-36945442

RESUMO

To better understand the pattern of primate genome structural variation, we sequenced and assembled using multiple long-read sequencing technologies the genomes of eight nonhuman primate species, including New World monkeys (owl monkey and marmoset), Old World monkey (macaque), Asian apes (orangutan and gibbon), and African ape lineages (gorilla, bonobo, and chimpanzee). Compared to the human genome, we identified 1,338,997 lineage-specific fixed structural variants (SVs) disrupting 1,561 protein-coding genes and 136,932 regulatory elements, including the most complete set of human-specific fixed differences. Across 50 million years of primate evolution, we estimate that 819.47 Mbp or ~27% of the genome has been affected by SVs based on analysis of these primate lineages. We identify 1,607 structurally divergent regions (SDRs) wherein recurrent structural variation contributes to creating SV hotspots where genes are recurrently lost (CARDs, ABCD7, OLAH) and new lineage-specific genes are generated (e.g., CKAP2, NEK5) and have become targets of rapid chromosomal diversification and positive selection (e.g., RGPDs). High-fidelity long-read sequencing has made these dynamic regions of the genome accessible for sequence-level analyses within and between primate species for the first time.

4.
Viruses ; 14(7)2022 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-35891433

RESUMO

The COVID-19 pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has resulted in over 6 million deaths worldwide. The high variability in COVID-19 symptoms remains one of the most interesting mysteries of the pandemic. Genetic and environmental factors are likely to be key determinants of COVID-19 symptomatology. Here, we explored ACE2 as a genetic determinant for SARS-CoV-2 infection and COVID-19 symptomatology. Each human genome encodes two alleles of ACE2, which encodes the cell entry receptor for SARS-CoV-2. Here, we determined whether naturally occurring human ACE2 (hACE2) polymorphisms in the human population affect SARS-CoV-2 infection and the severity of COVID-19 symptoms. ACE2 variants S19P, I21V, E23K, K26R, K31R, N33I, H34R, E35K, and T92I showed increased virus infection compared to wild-type ACE2; thus, these variants could increase the risk for COVID-19. In contrast, variants D38V, Y83H, I468V, and N638S showed reduced infection, indicating a potential protective effect. hACE2 variants K26R and T92I increased infection by three-fold without changing the levels of ACE2 on the surface of the cells, suggesting that these variants may increase the risk of severe COVID-19. On the contrary, hACE2 variants D38V and Y83H decreased SARS-CoV-2 infection by four- and ten-fold, respectively, without changing surface expression, suggesting that these variants may protect against severe COVID-19. Remarkably, all protective hACE2 Polymorphisms were found almost exclusively in Asian populations, which may provide a partial explanation for the low COVID-19 mortality rates in Asian countries. Thus, hACE2 polymorphisms may modulate susceptibility to SARS-CoV-2 in the host and partially account for the differences in severity of COVID-19 among different ethnic groups.


Assuntos
Enzima de Conversão de Angiotensina 2/genética , COVID-19 , COVID-19/genética , Humanos , Pandemias , Peptidil Dipeptidase A/metabolismo , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...